THEOREM OF NECESSARY CONDITION DIFFERENTIABILITY OF A FUNCTION


THEOREM OF NECESSARY

CONDITION
 DIFFERENTIABILITY OF A FUNCTION


Theorem  :


Let f be a real valued function defined on a neighbourhood of
(a, b). If f differentiable at (a, b), then


(i) f is continuous at (a, b).
(ii) fx(a, b) and fy(a, b) both exist


Proof :


Let (a + h, b + k) be any point in the neighbourhood of (a, b). Since
f differentiable at (a, b).


∴ f(a + h, b + k) − f(a, b) = Ah + Bk + hφ(h, k) + kψ(h, k)
where A, B are constants independent of h, k and φ(h, k) → 0, ψ(h, k) → 0
as (h, k) → (0, 0)


(i) Taking limit as (h, k) → (0, 0) on both sides of the result     …. ……    (1).
∴ lim               [f(a + h, b + k) − f(a, b)]
    (h,k)→(0,0)    



=  lim         Ah + Bk + hφ(h, k) + kψ(h, k)       

    (h,k)→(0,0)


= 0
           lim            f(a + h, b + k) = f(a, b)
⇒ (h, k) → (0, 0)


⇒ f is continuous at (a, b).


(ii) Putting k = 0 in (1)


f(a + h, b) − f(a, b) = Ah + hφ(h, 0)


f(a + h, b) − f(a, b)
—---------------------     = A + φ(h, 0)


           h


  ∴ lim        f(a + h, b) − f(a, b)       
     h→0      —-----------------------
                              h

      lim       
     h→0       (A + φ(h, 0)


=    A


   fx(a, b) = A


Similarly, we can show that
fy(a, b) = B
follows that fX(a, b) and fy(a, b) both exist.

No comments

Powered by Blogger.