Triangle inequality
Theorem:- (Triangle inequality)
for all a,b,in R,Then|a+b|< |a|+|b|.
Proof :-
We have, |a|=a if a>0 and |a|= -a if a<0 now taking |a|=c
and we get required result
-|a| ≤ a ≤ |a|....................... (1)
|-b| ≤ b ≤ |b|…………….. (2)
adding equation (1) and (2)
We get
-(|a| + |b|) ≤ |a + b| ≤ |a| +|b|
Therfor
|a+b | ≤ |a | + |b |
Post a Comment