Triangle inequality

 Theorem:-     (Triangle inequality)
for all
a,b,in R,Then|a+b|< |a|+|b|.


Proof :-


We have, |a|=a if a>0 and |a|= -a if a<0 now taking |a|=c


and we get required result


 -|a| ≤ a ≤ |a|....................... (1)


|-b| ≤ b ≤   |b|……………..  (2)


adding equation (1) and (2)


We get


-(|a| + |b|) ≤  |a + b| ≤ |a| +|b|


Therfor


  |a+b | ≤  |a | + |b |


No comments

Powered by Blogger.