Similarity and right angle triangle
Theorem : in a right angle triangle, if the altitude is drawn to the hypotenuse,then the two Triangles formed are similar to the original triangle and to each other.
Given : in △ ABC, ∠ABC=90º,
SegBD ⊥ SegAC, A-D-C
TO prove: △ABD ~ △ABC
△ BDC ~ △ ABC
△ ADB ~ △ BDC
Proof: in △ ADB and △ ABC
△ DAB ≅ △ BAC........ (common angle)
△ ADB ≅ △ ABC......... (each90º)
△ ADB ~ △ ABC............... (AA Test)..... (1)
Now in BDC and ABC
△ BCD ≅ △ ACB............. (common angle)
△ BDC ≅ △ ABC......... ( each 90º)
△ BDC ~ △ ABC................ (AA Test )...... (2)
from equation (1) and (2)
△ ADB ~ △ BDC............. (3)
from equation (1),(2) and(3)
△ ADB ~ △ BDC ~ △ABC..... (Transitivity)

Post a Comment