Theorem: opposite sides and opposite angles of a parallelogram are congruent.
GIVEN:▢ ABCD is a parallelogram. it means sideAB ∥SideDC, sideAD∥ sideBC.
TO PROVE :segAD ≅ segBC, SegDC ≅ segAB,
∠ADC≅ ∠ CBA, and ∠DAB ≅ ∠ BCD.
CONSTRUCTION :Draw diagonal AC
PROOF:segDC∥segAB and diagonal AC is transversal.
∴∠ DCA ≅ ∠BAC ........ ( alternative angles)... (1)
segDA ∥ segBC and diagonal AC is transversal
∴ ∠ DAC ≅ ∠BCA ...... ( alternate angles)......(2)
Now, in △ ADC and △ CBA
∠DAC ≅ ∠BCA ......... [from( 2)]
segAC ≅segCA .... ( common side)
∠DCA ≅ ∠ BAC .....[from(1)]
∴ △ ADC ≅△CBA ..... (ASA test of congruence)
∴ sideAD≅ sideCB ...... (c. s.c. t.)
and side DC ≅ sideAB ..... (c. s. c. t)
Also ∠ ADC ≅ ∠CBA ......... (c. a. c. t)
similarly, we can prove ∠ DAB ≅ ∠ BCD
Post a Comment